
Stat 5870: Key points and formulae Week 13 - updated

Fun with models (part 1): So far have seen:
To “control” for important confounding variables
To allow lines to curve

What’s to come:
Using regression to fit T-test and ANOVA models
Models with both categorical and continuous variables:

Analysis of covariance
Heterogeneous regression lines models

Connecting regression and T-test:
T-test model using means: Yij = µi + εij, i =′ a′, ‘b′

2 groups (’a’, and ’b’), 2 µi parameters
Indicator variable:

X = I(something) means X =

{
1 when something is true
0 when something is false

So I(group = ’b’) is 1 when the group = “b” and 0 when the group = “a”
Write T-test model as a regression, using Xij = I(obs i, j in group b)
T-test model using regression: Yij = β0 + β1Xij + εij

Relationship between the two T-test models

group mean Xij regression
a µa 0 β0
b µb 1 β0 + β1

Interpretation of the regression coefficients with X = I(group=“b”) (R only):
JMP and SAS define the indicator variable, X, differently
More a bit later

coefficient In terms of means
β0 µa

β1 µb − µa

Connecting regression and ANOVA:
T-test ideas, just more groups and a complication
ANOVA model: Yij = µi + εij

Define 3 indicator variables, one for each group:
So I(group = “b”) is 1 when the group = “b” and 0 when the group = “a” or “c”
X1i = I(i’th obs has group =“a”),
X2i = I(i’th obs has group =“b”),
X3i = I(i’th obs has group =“c”)

Fit the model Yi = β1X1i + β2X2i + β3X3i + εi (Note: no β0, so no intercept)
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group X1i X2i X3i predicted value
a 1 0 0 β1 = µa

b 0 1 0 β2 = µb

c 0 0 1 β3 = µc

Add an intercept to previous model
Write as a regression using a column of 1’s for β0
Model is Yi = β0X0i + β1X1i + β2X2i + β3X3i + εi

group X0i X1i X2i X3i predicted value
a 1 1 0 0 β0 + β1 = µa

b 1 0 1 0 β0 + β2 = µb

c 1 0 0 1 β0 + β3 = µc

Nasty numerical problem: X has 4 columns, but 1 is redundant
Choose any three, fourth can be computed from them. fourth is not new information.
Called a “non-full rank” X matrix

Can not use the matrix equation β̂ = (X
′
X)−1X

′
Y because X

′
X has no inverse.

Software “fix” the problem differently
R: Drop the first column (X1). Remaining three are full rank.
SAS: uses generalized inverse methods for non-full rank matrix,

equivalent to dropping last column
JMP: uses “effects” coding, +1, 0 or −1 and drops the last column

Can request indicator parameterization (drop last column)
The choice changes the estimated regression coefficients

So we have a problem with interpretation if you focus on coefficients:
R, SAS, and JMP give different estimates for β1 !!
NOT GOOD. Answer depends on arbitrary choice of parameterization

Take home point: use 2 programs to fit same model, will get different β̂’s
But: Many important quantities do not depend on the parameterization

R: group X0i X1i X2i X3i predicted value
a 1 0 0 β0 = µa

b 1 1 0 β0 + β2 = µb

c 1 0 1 β0 + β3 = µc

SAS: group X0i X1i X2i X3i predicted value
a 1 1 0 β0 + β1 = µa

b 1 0 1 β0 + β2 = µb

c 1 0 0 β0 = µc
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JMP:
group X0i X1i X2i X3i predicted value

a 1 1 0 β0 + β1 = µa

b 1 0 1 β0 + β2 = µb

c 1 -1 -1 β0 − β1 − β2 = µc

Problem: All β’s have different estimates in R, SAS, or JMP !!
Example: 3 groups, means are Y 1 = 5, Y 2 = 10, Y 3 = 9

Parameter JMP R SAS
β0 8 5 9
βa -3 – -4
βb 2 5 1
βc – 4 –

NOT GOOD. Estimates of β’s depend on arbitrary choice of parameterization
My advice: don’t look at estimates of β’s in ANOVA models

In R, don’t look at summary() output
unless you understand how to interpret the coefficients

SAS and JMP: don’t show the estimates unless you specifically request them

Estimable functions:
Good news: some quantities, such as mean for group same for all three param.
Estimable function: an estimate that does not depend on arbitrary choices

Theory (not in this course): defines what is and what is not an estimable function
Some estimable functions: µa, µa − µb, µa − (µb + µc)/2
Some non-estimable functions: β1, µa − (µb + µc)

If software tells you ’non-est’, you either
wrote the wrong quantity (bad contrast or estimate statement)
wrote the wrong model
or the data is insufficient to fit the model

Software β0 β1 β2 β3 µa µ̂a µb µ̂b µc µ̂c

JMP 8 -3 2 – β0 + β1 8 - 3 = 5 β0 + β2 8 + 2 = 10 β0 − β1 − β2 8 + 3 - 2 = 9
R 5 – 5 4 β0 5 β0 + β2 5 + 5 = 10 β0 + β3 5 + 4 = 9
SAS 9 -4 1 – β0 + β1 9 - 4 = 5 β0 + β2 9 + 1 = 10 β0 9

More examples of estimable functions:

Software β0 β1 β2 β3 µa − µb µ̂a − µ̂a µc − (µa + µb)/2 µ̂c − (µ̂a + µ̂a)/2
JMP 8 -3 2 – β1 − β2 -3 -2 = -5 −1.5(β1 + β2) -1.5(-3 + 2) = 1.5
R 5 – 5 4 −β2 -5 β3 − β2/2 4 - 2.5 = 1.5
SAS 9 -4 1 – β1 − β2 -4 -1 = -5 −(β1 + β2)/2 -(-4 + 1)/2 = 1.5
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Fun with models (part 2):
Combining groups and continuous predictor variables

ANCOVA: analysis of covariance

Yij = µi + β Xij + εij

i indicates groups, j observation within group
parallel lines, each group has a different intercept

ANCOVA as a regression model

Yij = β0 + β1Gij + β2 Xij + εij

Define Gij = I(group =′ b′)

Group Gij Equation
a 0 β0 + β2Xij

b 1 β0 + β1 + β2Xij

Heterogeneous regression lines
Yij = µi + βi Xij + εij

each group (i) has a different intercept and a different slope
As a regression

Yij = β0 + β1Gij + β2 Xij + β3Gij Xij + εij

Define Gij = I(group = b)

Group Gij Equation
a 0 β0 + β2Xij

b 1 (β0 + β1) + (β2 + β3)Xij

Additive effects:
Most previous regression models have had additive effects
Example: model with 2 continuous predictor variables, X1 and X2

Yi = β0 + β1 X1i + β2 X2i + εi
Changing X1 by 1 unit changes Ŷ by β1 units,

no matter what value X2 has
Analogous consequence for changing X2

Example: model with sex (indicator for female) and age (continuous)
M and F have same change in Ŷ when age increased by 1
difference (female - male) = sex effect same for all ages

plot of Y vs age has two parallel lines (same difference at all ages)

Interaction:
In general, effect of one X variable depends on level of a second
Example: 2 continuous predictor variables
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Yi = β0 + β1 X1i + β2 X2i + β3 X1i X2i + εi
Change in Ŷ when X1i increased by one is β2 + β3 X2

Change depends on value of X2

Example: model with sex (indicator for female) and age (continuous)
Heterogeneous regression lines model has an interaction
Yij = µi + βi Xij + εij
difference (female - male) of same age is µf − µm + (βf − βm)X

depends on age, not constant
Interactions can be between:
a grouping variable (e.g. sex) and a continuous one (e.g., age)

so slope relating Y to age is different for M and F
other examples are light/flowering time, bat echolocation

two continuous variables (e.g., litter size and body weight)
so slope relating brain size to litter size depends on body weight

two grouping variables (e.g., sex and ethnicity)
So difference between sexes, M-F, is not constant, depends on ethnicity
We’ll talk a lot more about this situation in 2 way ANOVA

Diagnostics: old tools
Residual vs predicted value plot: equal variances, outliers, lack of fit
And 3 new tools: influence, standardized residuals, multicollinearity

Influence:
“Outliers” in X space. Outliers pull the fitted line to the obs.
Cook’s distance: How much do fitted values change when delete one obs.

computed for each point

Di =
Σallobs.(Ŷj(i) − Ŷj)2

p s2

Ŷj(i) is predicted value for j’th obs. when i’th obs. is deleted
Di ≈ 0: good, deleting that obs. doesn’t not change predicted values
Di > 1: deleting that obs. really changes predicted values

an unusually influential obs.

Standardized (Studentized) residuals.
Residuals can have very different variances even if errors have constant variance
Happens in SLR, but often much worse in MLR

Small variance when an outlier pulls the fitted line to that obs.

ri = Yi − Ŷi usual residual

rsi =
ri√

Var ri

slight differences (not important) between standardized and studentized versions
If model fits and errors are normal,

standardized residuals are normally distributed with mean 0 and sd 1
95% of standardized residuals between -2 and 2
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Multicollinearity
Two (or more) X variables highly correlated in the data set.

“hard” to separate the effects of the two X variables
Consequence: very large se for a regression coefficient

so non-signif. p-value
Should suspect multicollinearity when overall F test has p < 0.05

but all coefficient-specific T-tests have p > 0.05 or > 0.10
Assess by variance-inflation factor (VIF)

VIFi =
Var β̂i in MLR

Var β̂i when X’s uncorrel.
=

1

1−R2
i

R2
i measures how well (0-1 scale) Xi predicted by other X variables

VIF ≈ 1 is great; > 10 is bad
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